JVM 简单理解就是运行 Java 等语言的“操作系统”,没有 JVM,Java 程序就无法运行,JVM 自己“设计”了一套适合自己使用的内存结构。本篇文章就来整理一下,没有用到的就不写进来了,用过的或者学习的整理进来。

一、JVM内存模型

JVM内存模型图
JVM内存模型图

方法区和堆是所有线程共享的内存区域;而Java虚拟机栈、本地方法栈和程序员计数器是运行是线程私有的内存区域。

  • Java堆(Heap)是Java虚拟机所管理的内存中最大的一块。Java堆是被所有 线程共享 的一块内存区域,在虚拟机启动时创建。此内存区域的唯一目的就是存放对象实例,几乎所有的对象实例都在这里分配内存。
  • 元空间(Meta Space)/方法区(Method Area),方法区(Method Area)与Java堆一样,是各个 线程共享 的内存区域,它用于存储已被虚拟机加载的类信息、常量、静态变量、即时编译器编译后的代码等数据。
  • 程序计数器(Program Counter Register)是一块较小的内存空间,它的作用可以看做是当前线程所执行的字节码的行号指示器。当线程发生切换时,记录上次线程挂起的位置,之后线程切换回来的时候,继续从上次记录的位置开始执行。
  • 虚拟机栈(JVM Stacks),与程序计数器一样,Java虚拟机栈(Java Virtual Machine Stacks)也是线程私有的,它的生命周期与线程相同。虚拟机栈描述的是Java方法执行的内存模型:每个方法被执行的时候都会创建一个栈帧(Stack Frame)用于存储局部变量表、操作栈、动态链接、方法出口等信息。每一个方法被调用直至执行完成的过程,就对应着一个栈帧在虚拟机栈中从入栈到出栈的过程。
  • 本地方法栈(Native Method Stacks),本地方法栈(Native Method Stacks)与虚拟机栈所发挥的作用是非常相似的,其区别不过是虚拟机栈为虚拟机执行Java方法(也就是字节码)服务,而本地方法栈则是为虚拟机使用到的Native方法服务。

说到方法区,不得不提一下“永久代”这个概念,尤其是在JDK8以前,许多Java程序员都习惯在HotSpot虚拟机上开发、部署程序,很多人都更愿意把方法区称呼为“永久代”(Permanent Generation),或将两者混为一谈。本质上这两者并不是等价的,因为仅仅是当时的HotSpot虚拟机设计团队选择把收集器的分代设计扩展至方法区,或者说使用永久代来实现方法区而已,这样使得 HotSpot的垃圾收集器能够像管理Java堆一样管理这部分内存,省去专门为方法区编写内存管理代码的工作。

但现在回头来看,当年使用永久代来实现方法区的决定并不是一个好主意,这种设计导致了Java应用更容易遇到内存溢出的问题(永久代有-XX:MaxPermSize的上限,即使不设置也有默认大小,而J9和JRockit只要没有触碰到进程可用内存的上限,例如32位系统中的4GB限制,就不会出问题),而且有极少数方法 (例如String::intern())会因永久代的原因而导致不同虚拟机下有不同的表现。当Oracle收购BEA获得了JRockit的所有权后,准备把JRockit中的优秀功能,譬如Java Mission Control管理工具,移植到HotSpot虚拟机时,但因为两者对方法区实现的差异而面临诸多困难。

考虑到HotSpot未来的发展,在JDK 6的时候HotSpot开发团队就有放弃永久代,逐步改为采用本地内存(Native Memory)来实现方法区的计划了,到了JDK 7的HotSpot,已经把原本放在永久代的字符串常量池、静态变量等移出,而到了JDK 8,终于完全废弃了永久代的概念,改用与JRockit、J9一样在本地内存中实现的元空间(Meta-space)来代替,把JDK 7中永久代还剩余的内容(主要是类型信息)全部移到元空间中

以上内容摘自 《深入理解Java虚拟机第二版》 周志明

JNI(Java Native Interface)

JNI 是 Java Native Interface 的缩写,它提供了若干的API实现了Java和其他语言的通信(主要是C和C++)。

JNI 的适用场景:当我们有一些旧的库,已经使用C语言编写好了,如果要移植到Java上来,非常浪费时间,而JNI可以支持Java程序与C语言编写的库进行交互,这样就不必要进行移植了。或者是与硬件、操作系统进行交互、提高程序的性能等,都可以使用JNI。需要注意的一点是需要保证本地代码能工作在任何Java虚拟机环境。

一旦使用 JNI,Java 程序将丢失了 Java 平台的两个优点:

1、程序不再跨平台,要想跨平台,必须在不同的系统环境下程序编译配置本地语言部分。

2、程序不再是绝对安全的,本地代码的使用不当可能会导致整个程序崩溃。一个通用规则是,调用本地方法应该集中在少数的几个类当中,这样就降低了 Java 和其他语言之间的耦合。

常量池

要理解常量池,首先要知道,常量池分3种类型:

  1. Class文件内容里的常量池
  2. 运行时常量池(Runtime Constant Pool)
  3. 各个包装类型里实现的常量池,例如 String 类里面的字符串常量池(String Pool)

Class 常量池

Java 代码在经过编译器后,会生成一个 Class 文件,这个常量池就是Class文件里的一大段内容(通常是最大的一段内容),它主要存放着 字面量、符号引用 等信息,在 JVM 把 Class 文件加载完成后,Class 常量池里的数据会存放到运行时常量池中。

运行时常量池(Runtime Constant Pool)

运行时常量池是元空间/方法区(Method Area)的一部分,运行时常量池中存储的,是 基本类型的数据对象的引用,注意是对象的引用而不是对象实例本身哦。

Java 虚拟机在加载 Class 文件时,Class 文件内容里常量池的数据会放入运行时常量池。每一个加载好的 Class 对象里都会有一个运行时常量池。

字符串常量池(String Constant Pool)& 其他包装类型里实现的常量池

字符串由一个char[]构成(Java9 之后使用 byte[]),当我们的Java程序里频繁出现相同字面量的代码时,重复的创建和销毁对象是一件很浪费资源的事情,所以Java实现了一个字符串常量池。

JDK7 之后,字符串常量池从方法区迁移到了堆区,它的底层实现可以理解为是一个 HashTable。Java 虚拟机中只会存在一份字符串常量池。字符串常量池里,存放的数据可以是引用也可以是对象实例本身。

字符串常量池也具备运行时常量池动态性的特征,它支持运行期间将新的常量放入池中,这种特性被开发人员利用比较多的就是 String.intern() 方法。

上面的一堆都不重要,重要的是只要记住在 Java 中,字符串字面量都是存储在 字符串常量池 中的。例如:

1
2
// 此种赋值方式称为字符串字面量,如果你学过 Rust 语言,很好理解
String str = "abcd";

基本类型的包装类和常量池

Byte、Short、Integer、Long、Character、Boolean 这 6 种包装类和 String 都各自实现了自己的常量池。Float 和 Double 这两个浮点类型没有实现常量池。

字符串常量池(String pool)的实例

1
String str1 = "jhlz";

当以上代码运行时,JVM会到字符串常量池查找 “jhlz” 这个字面量对象是否存在:

  • 存在:则返回该对象的引用给变量 str1 。
  • 不存在:则创建一个对象,同时将引用返回给变量 str1 。(JDK8之后,对象实例直接存储在字符串常量池里)
1
2
3
4
5
6
7
String str1 = "jhlz";
String str2 = "jhlz";
System.out.println(str1 == str2);//str1 和 str2 都指向同一个对象,返回TRUE

// 使用 new 关键字创建 String 对象时,不管字符串常量池中是否有相同内容的对象的引用,新的字符串对象都会创建
String str3 = new String("jhlz");
System.out.println(str1 == str3); //返回FALSE

对于使用了 new 创建的字符串对象,如果想要将这个对象添加到字符串常量池,可以使用 intern() 方法。

1
2
3
4
5
String str1 = "jhlz";
String str2 = "jhlz";
String str3 = new String("jhlz");
String str4 = str3.intern();
System.out.println(str4 == str1);//返回TRUE

intern() 方法会检查字符串常量池中是否有与之匹配的对象,并做如下操作:

  • 存在:直接返回对象引用给interns变量。
  • 不存在:将这个对象引用加入到常量池,再返回对象引用给interns变量。

二、调优命令

Sun JDK监控和故障处理命令有jps jstat jmap jhat jstack jinfo
jps:JVM Process Status Tool,显示指定系统内所有的HotSpot虚拟机进程。
jstat:JVM statistics Monitoring是用于监视虚拟机运行时状态信息的命令,它可以显示出虚拟机进程中的类装载、内存、垃圾收集、JIT编译等运行数据。
jmap:JVM Memory Map命令用于生成heap dump文件。
jhat:JVM Heap Analysis Tool命令是与jmap搭配使用,用来分析jmap生成的dump,jhat内置了一个微型的HTTP/HTML服务器,生成dump的分析结果后,可以在浏览器中查看jstack,用于生成java虚拟机当前时刻的线程快照。
jinfo:JVM Configuration info 这个命令作用是实时查看和调整虚拟机运行参数。
jstack:查找死锁。

1
2
3
4
5
6
7
8
jmap ‐dump:format=b,file=eureka.hprof 14660
# jstack pid -A 后面数字为显示的线程所在行的后面10行,最后的参数是线程id的16进制表示。
jstack 19663|grep -A 10 4cd0

jstat -gc pid

# 打印GC日志方法 %t:时间
java ‐jar ‐Xloggc:./gc‐%t.log ‐XX:+PrintGCDetails ‐XX:+PrintGCDateStamps ‐XX:+PrintGCTimeStamps ‐XX:+PrintGCCause ‐XX:+UseGCLogFileRotation ‐XX:NumberOfGCLogFiles=10 ‐XX:GCLogFileSize=100M xxxx.jar

三、常见调优工具

常用调优工具分为两类,jdk自带监控工具:jconsole和jvisualvm,第三方有:MAT(Memory Analyzer Tool)、GChisto。
jconsole,Java Monitoring and Management Console是从java5开始,在JDK中自带的java监控和管理控制台,用于对JVM中内存,线程和类等的监控
jvisualvm,jdk自带全能工具,可以分析内存快照、线程快照;监控内存变化、GC变化等。
MAT,Memory Analyzer Tool,一个基于Eclipse的内存分析工具,是一个快速、功能丰富的Java heap分析工具,它可以帮助我们查找内存泄漏和减少内存消耗
GChisto,一款专业分析gc日志的工具

Arthas

首先下载到本机,用java -jar运行即可,可以识别机器上所有Java进程。

输入dashboard可以查看整个进程的运行情况,线程、内存、GC、运行环境信息。详细使用参照 官方文档

四、JVM垃圾收集算法

  • 引用计数法
  • 根可达算法
  • 标记清除算法
  • 标记复制算法
  • 标记整理算法

五、JVM经典优化技术

  • 方法内联:

方法内联就是把目标方法的代码原封不动地 “复制” 到发起调用的方法之中,避免发生真实的方法调用而已。但实际上Java虚拟机中的内联过程却远没 有想象中容易,甚至如果不是即时编译器做了一些特殊的努力,按照经典编译原理的优化理论,大多 数的Java方法都无法进行内联。
除了消除方法调用的成本之外,它更重要的意义是为其他优化手段建立良好的基础。

只有使用 invokespecial指令调用的私有方法、实例构造器、父类方法和使用invokestatic指令调用的静态方法才会 在编译期进行解析。除了上述四种方法之外(最多再除去被final修饰的方法这种特殊情况,尽管它使 用invokevirtual指令调用,但也是非虚方法,《Java语言规范》中明确说明了这点),其他的Java方法 调用都必须在运行时进行方法接收者的多态选择,它们都有可能存在多于一个版本的方法接收者,简 而言之,Java语言中默认的实例方法是虚方法。

  • 逃逸分析:

逃逸分析(Escape Analysis)是目前Java虚拟机中比较前沿的优化技术,它与类型继承关系分析一样,并不是直接优化代码的手段,而是为其他优化措施提供依据的分析技术。
逃逸分析的基本原理是:分析对象动态作用域,当一个对象在方法里面被定义后,它可能被外部方法所引用,例如作为调用参数传递到其他方法中,这种称为方法逃逸;甚至还有可能被外部线程访问到,譬如赋值给可以在其他线程中访问的实例变量,这种称为线程逃逸;从不逃逸、方法逃逸到线 程逃逸,称为对象由低到高的不同逃逸程度。如果能证明一个对象不会逃逸到方法或线程之外(换句话说是别的方法或线程无法通过任何途径 访问到这个对象),或者逃逸程度比较低(只逃逸出方法而不会逃逸出线程),则可能为这个对象实 例采取不同程度的优化
比如栈上分配、标量替换、同步消除都是以此为基。

  • 公共子表达式消除

公共子表达式消除是一项非常经典的、普遍应用于各种编译器的优化技术,它的含义是:如果一个表达式E之前已经被计算过了,并且从先前的计算到现在E中所有变量的值都没有发生变化,那么 E 的这次出现就称为公共子表达式。对于这种表达式,没有必要花时间再对它重新进行计算,只需要直 接用前面计算过的表达式结果代替E。
如果这种优化仅限于程序基本块内,便可称为局部公共子表达式消除(Local Common Subexpression Elimination),如果这种优化的范围涵盖了多个基本块,那就称为全局公共子表达式消除(Global Common Subexpression Elimination)。

  • 数组边界检查消除

附:JVM指令码

JVM指令码 助记符 说明
0x00 nop 什么都不做
0x01 aconst_null 将null推送至栈顶
0x02 iconst_m1 将int型-1推送至栈顶
0x03 iconst_0 将int型0推送至栈顶
0x04 iconst_1 将int型1推送至栈顶
0x05 iconst_2 将int型2推送至操作数栈顶
0x06 iconst_3 将int型3推送至栈顶
0x07 iconst_4 将int型4推送至栈顶
0x08 iconst_5 将int型5推送至栈顶
0x09 lconst_0 将long型0推送至栈顶
0x0a lconst_1 将long型1推送至栈顶
0x0b fconst_0 将float型0推送至栈顶
0x0c fconst_1 将float型1推送至栈顶
0x0d fconst_2 将float型2推送至栈顶
0x0e dconst_0 将double型0推送至栈顶
0x0f dconst_1 将double型1推送至栈顶
0x10 bipush 将单字节的常量值(-128~127)推送至栈顶
0x11 sipush 将一个短整型常量值(-32768~32767)推送至栈顶
0x12 ldc 将int, float或String型常量值从常量池中推送至栈顶
0x13 ldc_w 将int, float或String型常量值从常量池中推送至栈顶(宽索引)
0x14 ldc2_w 将long或double型常量值从常量池中推送至栈顶(宽索引)
0x15 iload 将指定的int型本地变量推送至栈顶
0x16 lload 将指定的long型本地变量推送至栈顶
0x17 fload 将指定的float型本地变量推送至栈顶
0x18 dload 将指定的double型本地变量推送至栈顶
0x19 aload 将指定的引用类型本地变量推送至栈顶
0x1a iload_0 将第一个int型本地变量推送至栈顶
0x1b iload_1 将第二个int型本地变量推送至栈顶
0x1c iload_2 将第三个int型本地变量推送至栈顶
0x1d iload_3 将第四个int型本地变量推送至栈顶
0x1e lload_0 将第一个long型本地变量推送至栈顶
0x1f lload_1 将第二个long型本地变量推送至栈顶
0x20 lload_2 将第三个long型本地变量推送至栈顶
0x21 lload_3 将第四个long型本地变量推送至栈顶
0x22 fload_0 将第一个float型本地变量推送至栈顶
0x23 fload_1 将第二个float型本地变量推送至栈顶
0x24 fload_2 将第三个float型本地变量推送至栈顶
0x25 fload_3 将第四个float型本地变量推送至栈顶
0x26 dload_0 将第一个double型本地变量推送至栈顶
0x27 dload_1 将第二个double型本地变量推送至栈顶
0x28 dload_2 将第三个double型本地变量推送至栈顶
0x29 dload_3 将第四个double型本地变量推送至栈顶
0x2a aload_0 将第一个引用类型本地变量推送至栈顶
0x2b aload_1 将第二个引用类型本地变量推送至栈顶
0x2c aload_2 将第三个引用类型本地变量推送至栈顶
0x2d aload_3 将第四个引用类型本地变量推送至栈顶
0x2e iaload 将int型数组指定索引的值推送至栈顶
0x2f laload 将long型数组指定索引的值推送至栈顶
0x30 faload 将float型数组指定索引的值推送至栈顶
0x31 daload 将double型数组指定索引的值推送至栈顶
0x32 aaload 将引用型数组指定索引的值推送至栈顶
0x33 baload 将boolean或byte型数组指定索引的值推送至栈顶
0x34 caload 将char型数组指定索引的值推送至栈顶
0x35 saload 将short型数组指定索引的值推送至栈顶
0x36 istore 将栈顶int型数值存入指定本地变量
0x37 lstore 将栈顶long型数值存入指定本地变量
0x38 fstore 将栈顶float型数值存入指定本地变量
0x39 dstore 将栈顶double型数值存入指定本地变量
0x3a astore 将栈顶引用型数值存入指定本地变量
0x3b istore_0 将栈顶int型数值存入第一个本地变量
0x3c istore_1 将栈顶int型数值存入第二个本地变量
0x3d istore_2 将栈顶int型数值存入第三个本地变量
0x3e istore_3 将栈顶int型数值存入第四个本地变量
0x3f lstore_0 将栈顶long型数值存入第一个本地变量
0x40 lstore_1 将栈顶long型数值存入第二个本地变量
0x41 lstore_2 将栈顶long型数值存入第三个本地变量
0x42 lstore_3 将栈顶long型数值存入第四个本地变量
0x43 fstore_0 将栈顶float型数值存入第一个本地变量
0x44 fstore_1 将栈顶float型数值存入第二个本地变量
0x45 fstore_2 将栈顶float型数值存入第三个本地变量
0x46 fstore_3 将栈顶float型数值存入第四个本地变量
0x47 dstore_0 将栈顶double型数值存入第一个本地变量
0x48 dstore_1 将栈顶double型数值存入第二个本地变量
0x49 dstore_2 将栈顶double型数值存入第三个本地变量
0x4a dstore_3 将栈顶double型数值存入第四个本地变量
0x4b astore_0 将栈顶引用型数值存入第一个本地变量
0x4c astore_1 将栈顶引用型数值存入第二个本地变量
0x4d astore_2 将栈顶引用型数值存入第三个本地变量
0x4e astore_3 将栈顶引用型数值存入第四个本地变量
0x4f iastore 将栈顶int型数值存入指定数组的指定索引位置
0x50 lastore 将栈顶long型数值存入指定数组的指定索引位置
0x51 fastore 将栈顶float型数值存入指定数组的指定索引位置
0x52 dastore 将栈顶double型数值存入指定数组的指定索引位置
0x53 aastore 将栈顶引用型数值存入指定数组的指定索引位置
0x54 bastore 将栈顶boolean或byte型数值存入指定数组的指定索引位置
0x55 castore 将栈顶char型数值存入指定数组的指定索引位置
0x56 sastore 将栈顶short型数值存入指定数组的指定索引位置
0x57 pop 将栈顶数值弹出 (数值不能是long或double类型的)
0x58 pop2 将栈顶的一个(long或double类型的)或两个数值弹出(其它)
0x59 dup 复制栈顶数值并将复制值压入栈顶
0x5a dup_x1 复制栈顶数值并将两个复制值压入栈顶
0x5b dup_x2 复制栈顶数值并将三个(或两个)复制值压入栈顶
0x5c dup2 复制栈顶一个(long或double类型的)或两个(其它)数值并将复制值压入栈顶
0x5d dup2_x1 <待补充>
0x5e dup2_x2 <待补充>
0x5f swap 将栈最顶端的两个数值互换(数值不能是long或double类型的)
0x60 iadd 将栈顶两int型数值相加并将结果压入栈顶
0x61 ladd 将栈顶两long型数值相加并将结果压入栈顶
0x62 fadd 将栈顶两float型数值相加并将结果压入栈顶
0x63 dadd 将栈顶两double型数值相加并将结果压入栈顶
0x64 isub 将栈顶两int型数值相减并将结果压入栈顶
0x65 lsub 将栈顶两long型数值相减并将结果压入栈顶
0x66 fsub 将栈顶两float型数值相减并将结果压入栈顶
0x67 dsub 将栈顶两double型数值相减并将结果压入栈顶
0x68 imul 将栈顶两int型数值相乘并将结果压入栈顶
0x69 lmul 将栈顶两long型数值相乘并将结果压入栈顶
0x6a fmul 将栈顶两float型数值相乘并将结果压入栈顶
0x6b dmul 将栈顶两double型数值相乘并将结果压入栈顶
0x6c idiv 将栈顶两int型数值相除并将结果压入栈顶
0x6d ldiv 将栈顶两long型数值相除并将结果压入栈顶
0x6e fdiv 将栈顶两float型数值相除并将结果压入栈顶
0x6f ddiv 将栈顶两double型数值相除并将结果压入栈顶
0x70 irem 将栈顶两int型数值作取模运算并将结果压入栈顶
0x71 lrem 将栈顶两long型数值作取模运算并将结果压入栈顶
0x72 frem 将栈顶两float型数值作取模运算并将结果压入栈顶
0x73 drem 将栈顶两double型数值作取模运算并将结果压入栈顶
0x74 ineg 将栈顶int型数值取负并将结果压入栈顶
0x75 lneg 将栈顶long型数值取负并将结果压入栈顶
0x76 fneg 将栈顶float型数值取负并将结果压入栈顶
0x77 dneg 将栈顶double型数值取负并将结果压入栈顶
0x78 ishl 将int型数值左移位指定位数并将结果压入栈顶
0x79 lshl 将long型数值左移位指定位数并将结果压入栈顶
0x7a ishr 将int型数值右(符号)移位指定位数并将结果压入栈顶
0x7b lshr 将long型数值右(符号)移位指定位数并将结果压入栈顶
0x7c iushr 将int型数值右(无符号)移位指定位数并将结果压入栈顶
0x7d lushr 将long型数值右(无符号)移位指定位数并将结果压入栈顶
0x7e iand 将栈顶两int型数值作“按位与”并将结果压入栈顶
0x7f land 将栈顶两long型数值作“按位与”并将结果压入栈顶
0x80 ior 将栈顶两int型数值作“按位或”并将结果压入栈顶
0x81 lor 将栈顶两long型数值作“按位或”并将结果压入栈顶
0x82 ixor 将栈顶两int型数值作“按位异或”并将结果压入栈顶
0x83 lxor 将栈顶两long型数值作“按位异或”并将结果压入栈顶
0x84 iinc 将指定位置的int型变量增加指定值(i++, i–, i+=2)
0x85 i2l 将栈顶int型数值强制转换成long型数值并将结果压入栈顶
0x86 i2f 将栈顶int型数值强制转换成float型数值并将结果压入栈顶
0x87 i2d 将栈顶int型数值强制转换成double型数值并将结果压入栈顶
0x88 l2i 将栈顶long型数值强制转换成int型数值并将结果压入栈顶
0x89 l2f 将栈顶long型数值强制转换成float型数值并将结果压入栈顶
0x8a l2d 将栈顶long型数值强制转换成double型数值并将结果压入栈顶
0x8b f2i 将栈顶float型数值强制转换成int型数值并将结果压入栈顶
0x8c f2l 将栈顶float型数值强制转换成long型数值并将结果压入栈顶
0x8d f2d 将栈顶float型数值强制转换成double型数值并将结果压入栈顶
0x8e d2i 将栈顶double型数值强制转换成int型数值并将结果压入栈顶
0x8f d2l 将栈顶double型数值强制转换成long型数值并将结果压入栈顶
0x90 d2f 将栈顶double型数值强制转换成float型数值并将结果压入栈顶
0x91 i2b 将栈顶int型数值强制转换成byte型数值并将结果压入栈顶
0x92 i2c 将栈顶int型数值强制转换成char型数值并将结果压入栈顶
0x93 i2s 将栈顶int型数值强制转换成short型数值并将结果压入栈顶
0x94 lcmp 比较栈顶两long型数值大小,并将结果(1,0,-1)压入栈顶
0x95 fcmpl 比较栈顶两float型数值大小,并将结果(1,0,-1)压入栈顶;当其中一 个数值为NaN时,将-1压入栈顶
0x96 fcmpg 比较栈顶两float型数值大小,并将结果(1,0,-1)压入栈顶;当其中一 个数值为NaN时,将1压入栈顶
0x97 dcmpl 比较栈顶两double型数值大小,并将结果(1,0,-1)压入栈顶;当其中 一个数值为NaN时,将-1压入栈顶
0x98 dcmpg 比较栈顶两double型数值大小,并将结果(1,0,-1)压入栈顶;当其中 一个数值为NaN时,将1压入栈顶
0x99 ifeq 当栈顶int型数值等于0时跳转
0x9a ifne 当栈顶int型数值不等于0时跳转
0x9b iflt 当栈顶int型数值小于0时跳转
0x9c ifge 当栈顶int型数值大于等于0时跳转
0x9d ifgt 当栈顶int型数值大于0时跳转
0x9e ifle 当栈顶int型数值小于等于0时跳转
0x9f if_icmpeq 比较栈顶两int型数值大小,当结果等于0时跳转
0xa0 if_icmpne 比较栈顶两int型数值大小,当结果不等于0时跳转
0xa1 if_icmplt 比较栈顶两int型数值大小,当结果小于0时跳转
0xa2 if_icmpge 比较栈顶两int型数值大小,当结果大于等于0时跳转
0xa3 if_icmpgt 比较栈顶两int型数值大小,当结果大于0时跳转
0xa4 if_icmple 比较栈顶两int型数值大小,当结果小于等于0时跳转
0xa5 if_acmpeq 比较栈顶两引用型数值,当结果相等时跳转
0xa6 if_acmpne 比较栈顶两引用型数值,当结果不相等时跳转
0xa7 goto 无条件跳转
0xa8 jsr 跳转至指定16位offset位置,并将jsr下一条指令地址压入栈顶
0xa9 ret 返回至本地变量指定的index的指令位置(一般与jsr, jsr_w联合使用)
0xaa tableswitch 用于switch条件跳转,case值连续(可变长度指令)
0xab lookupswitch 用于switch条件跳转,case值不连续(可变长度指令)
0xac ireturn 从当前方法返回int 0xad lreturn 从当前方法返回long
0xae freturn 从当前方法返回float 0xaf dreturn 从当前方法返回double
0xb0 areturn 从当前方法返回对象引用 0xb1 return 从当前方法返回void
0xb2 getstatic 获取指定类的静态域,并将其值压入栈顶
0xb3 putstatic 为指定的类的静态域赋值
0xb4 getfield 获取指定类的实例域,并将其值压入栈顶
0xb5 putfield 为指定的类的实例域赋值
0xb6 invokevirtual 调用实例方法
0xb7 invokespecial 调用超类构造方法,实例初始化方法,私有方法
0xb8 invokestatic 调用静态方法
0xb9 invokeinterface 调用接口方法
0xba – 0xbb new 创建一个对象,并将其引用值压入栈顶
0xbc newarray 创建一个指定原始类型(如int, float, char…)的数组,并将其引用值压 入栈顶
0xbd anewarray 创建一个引用型(如类,接口,数组)的数组,并将其引用值压入栈顶
0xbe arraylength 获得数组的长度值并压入栈顶
0xbf athrow 将栈顶的异常抛出
0xc0 checkcast 检验类型转换,检验未通过将抛出ClassCastException
0xc1 instanceof 检验对象是否是指定的类的实例,如果是将1压入栈顶,否则将0压入栈顶
0xc2 monitorenter 获得对象的锁,用于同步方法或同步块
0xc3 monitorexit 释放对象的锁,用于同步方法或同步块
0xc4 wide <待补充>
0xc5 multianewarray 创建指定类型和指定维度的多维数组(执行该指令时,操作栈中必 须包含各维度的长度值),并将其引用值压入栈顶
0xc6 ifnull 为null时跳转
0xc7 ifnonnull 不为null时跳转
0xc8 goto_w 无条件跳转(宽索引)
0xc9 jsr_w 跳转至指定32位offset位置,并将jsr_w下一条指令地址压入栈顶

本站由 江湖浪子 使用 Stellar 1.28.1 主题创建。
本博客所有文章除特别声明外,均采用 CC BY-NC-SA 4.0 许可协议,转载请注明出处。